# African Swine Fever Research And Current Situation

Luis L. Rodriguez Research Leader

Foreign Animal Disease Research Unit
Agricultural Research Service, Plum Island Animal
Disease Center







#### African Swine Fever

- Virulence ranges from
  - high to low
- Affects domestic and wild pigs
  - Produces inapparent infection in two species of wild African swine
    - Wart hog
    - Bush pig
- High mortality in domestic pigs









## African Swine Fever Virus Natural Cycle



#### African Swine Fever Virus

- Stable in the environment
  - Resistant to wide pH range (3.9 11.5)
  - It can survive for a year and a half in blood stored at 4° C, and at least a month in contaminated pig pens
  - Remains infectious for 150 days in boned meat stored at 39° F, 140 days in salted dried hams, and several years in frozen meat





**ASF: The Disease** 

 Highly lethal (100%) to subclinical

- Edema, ascites and hemorrhage
- Virulence associated replication and spread within the mononuclearphagocytic system
- Long-term persistent/ latent infection
- All domestic pigs susceptible
- Large natural reservoir in nature
- No vaccine available





## Clinical Signs: Acute Form, High Virulence

- Incubation period: 48-72 hours
- High fever (animals huddled)
- Moderate anorexia
- Leukopenia, thrombocytopenia
- Recumbency
- Erythema, cyanotic skin blotching
- Possibly diarrhea (bloody) and abortions
- Vomiting
- Ocular discharge
- Death can follow (100% mortality in domestic pigs)
- Survivors are virus carriers for life







## Clinical Signs: Acute Form, High Virulence









## Clinical Signs: Subacute Form, Moderate Virulence

- Less intense symptoms
- Duration of illness is 5-30 days
- Abortion in pregnant sows
- Death within 15-45 days
- Mortality rate is lower (e.g. 30-70%)



## Clinical Signs: Chronic Infection

- Multi-focal erythema
  - Ears, abdomen, inner thigh
  - May be raised and necrotic
  - Develops over 2-15 months
- Pericarditis
- Low fever
- Pneumonia
- Painless swelling of carpal and tarsal joints
- Emaciation, stunting
- Death (low mortality)





## Geographic Distribution

- Until 1957: Endemic in sub-Saharan Africa (Equator to northern South Africa)
- After 1957: Found in wild boar and feral pigs Sardinia, Portugal Spain
- 1970's spread to Cuba, Haiti, the Dominican Republic, Brazil
- Spread in Europe 1980's
- Eradicated in most of Europe 1990s







### ASF Distribution 1990-2006









# 2007 ASF outbreak in the Caucasus







## 







## 







#### ASF On The Move 2010









#### **ARS Mission**

ARS conducts research to develop and transfer solutions to agricultural problems of high national priority.





### ASF RESEARCH GAPS

- Pathogenesis: viral and host virulence determinants – early events in infection
- Virus ecology: host tick virus interactions – role in transmission
- Immunology: protective immune response: there are no effective vaccines!
- Epidemiology: transmission cycles direct vs vector





# ARS Research Program – until 2004

- Protective Immunity to ASF
- Viral Functional Genomics
  - Virulence/host range genes
  - Host susceptibility and/or resistance genes



Comparative genomics



## ARS Research Accomplishments

- First to determine the genetic content of pathogenic ASF viruses
- First to develop techniques for genetically engineering ASFV genome
- Identified and characterized novel ASFV virulence/host range genes
- First to genetically engineer live-attenuated ASF viruses which protect swine from ASF
- Characterized persistent ASFV infection in tick host
- Described latent infection as sequel to infection in all surviving pigs (carrier animals)
- Defined protective host responses to virus infection
- First to identify viral antigens involved in protective immunity





## ASFV genome – 190 kbp



- Structural proteins: p30, p72, p54
- Immune response modulation: 5EL (IkB), 8CR (lectin), 8DR (CD2)
- Prevention of apoptotic cell death: 5HL (Bcl2), 4CL (iap)

Host range and virulence associated genes

- NL, UK, 9GL, TK
- Multigene family (MGF) 360 genes
- Multigene family (MGF) 530 genes



## Genetic engineering of ASFV







#### **ARS Current Research**

- Countermeasures to Control Foreign Animal Diseases of Swine – Dr. Manuel Borca P.I.
  - Develop intervention strategies to control ASFV
    - Identify virus-host determinants of virulence and transmission
    - Develop technologies to enable the development of ASF vaccines that are efficacious against the most prevalent ASF strains





#### **FADRU Staff**

- 6 Administrative staff
- 8 Senior scientists
- 5 Visiting Scientists
- 10 support scientists
- 5 ARS postdocs
- 15 PIADC-ORISE Research Fellows
- 10 University Cooperators
- 2 Federal Collaborators
- TOTAL ARS PERSONNEL AT PIADC 60







# Thank you!





